English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1984-Apr

Soybean leaf urease: a seed enzyme?

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J C Polacco
R G Winkler

Keywords

Abstract

The soybean (Glycine max L. [Merrill]) var Itachi has 0.2 to 0.3% the urease activity found in developing embryos of a normal line, Prize. The hydroxyurea sensitivity and pH preference of this basal seed urease indicate that it represents a unique enzyme rather than an unusually low level of the normal seed urease. Itachi's seed urease is less sensitive to hydroxyurea inhibition (65-80% inhibition) than Prize seed urease (85-95% inhibition) and is more active at pH 6.1 and 8.8 than at 7.4, whereas the normal seed urease is least active at pH 8.8. Both properties of the basal seed urease are in agreement with the behavior of the leaf urease in extracts of Prize and Itachi leaves.Neither the leaf urease nor the Itachi seed urease is immuneprecipitated by affinity-purified seed urease antibodies. However, when antibody is in excess, Staphylococcus aureus (Cowan) cell walls containing protein A can precipitate soluble antibody-urease complexes (47-68% of total enzyme) from both leaf (Itachi and Prize) and Itachi seed extracts. Under identical conditions, greater than 90% of Prize seed urease is precipitated. At a 100-fold dilution of antibody, 60% of Prize seed urease is still antibody-complexed while the antibody recognition of the leaf or Itachi seed urease is reduced to 2 to 24%.The cell culture urease also resembles leaf urease by the criteria of pH preference, hydroxyurea sensitivity, and recognition by seed urease antibodies. In the presence of cycloheximide, nickel stimulates cell culture urease levels (14- or 35-fold depending on assay pH) indicating that cell cultures make a preponderance of apourease under nickel-limiting conditions.Inasmuch as the ureases of leaf, cell culture, and Itachi seeds are more closely related to each other than they are to the abundant (Prize) seed urease, suggests that the three tissues either contain an identical urease or related tissue-specific isozymes. This second form of urease may have an assimilatory role since it is found in both leaf and seed sink tissues and is required for urea assimilation in cell culture (Polacco 1977 Plant Physiol 59: 827-830).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge