English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cell Structure and Function 2009

Spermidine regulates insulin synthesis and cytoplasmic Ca(2+) in mouse beta-TC6 insulinoma cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Masahiro Ohtani
Ikuko Mizuno
Yumiko Kojima
Yuichi Ishikawa
Midori Sodeno
Yuka Asakura
Keijiro Samejima
Takami Oka

Keywords

Abstract

In order to assess the functional role of the polyamines spermidine and spermine in pancreatic beta-cells, we examined the effect of spermidine and spermine synthase inhibitors, trans-4-methylcyclohexylamine (MCHA) and N-(3-aminopropyl)cyclohexylamine (APCHA), on cellular polyamine and insulin contents, insulin secretion, and cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) in mouse insulin-secreting Beta-TC6 cells. The cellular spermidine and spermine contents were reduced 90% and 64% by cultivation of cells in the presence of MCHA and APCHA for 3 days, respectively. Addition of spermidine or spermine reversed the polyamine level reduced by MCHA or APCHA, respectively. Insulin secretion was decreased 40~60% in the cells treated with MCHA or APCHA. The reduction by MCHA was reversed to the untreated level by adding spermidine exogenously, while the effect of APCHA was not reversed by treatment with spermine. The cellular insulin content was also reduced by treatment with MCHA but not the expression of insulin 1 and 2 genes, suggesting that spermidine was involved in the translation of insulin mRNAs. The elevation of [Ca(2+)](i), a key event triggering insulin secretion induced by glucose, was reduced in Beta-TC6 cells by MCHA treatment. The spermidine synthase inhibitor also augmented the sustained [Ca(2+)](i) rise induced by carbamylcholine but not by a high concentration of KCl or nicotine. These results suggested that spermidine rather than spermine plays an important role in the regulation of insulin synthesis and the glucose-induced [Ca(2+)](i) rise in Beta-TC6 cells.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge