English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Brain research. Molecular brain research 1996-May

Spermidine/spermine N1-acetyltransferase mRNA levels show marked and region-specific changes in the early phase after transient forebrain ischemia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Zoli
P Pedrazzi
I Zini
L F Agnati

Keywords

Abstract

Considerable evidence points to an involvement of natural polyamines (putrescine, spermidine and spermine) in trophic regulation of brain tissue. Spermidine/spermine N1-acetyltransferase is the key enzyme in the interconversion pathway which leads to the formation of spermidine and putrescine from spermine and spermidine, respectively. In the present paper we have studied using in situ hybridization histochemistry the levels of spermidine/spermine N1-acetyltransferase mRNA in the rat central nervous system after transient forebrain ischemia. In the first hours after the insult, a modest increase in spermidine/spermine N1-acetyltransferase mRNA levels was observed in ependymal cells and other non-neuronal cells of all telencephalic and diencephalic regions. In addition, major increases in spermidine/spermine N1-acetyltransferase mRNA levels were observed in regions selectively vulnerable to the ischemic insult, such as striatum, hippocampus and cerebral cortex, during the first day post-reperfusion. The time course and extent of labelling increase were subregion- and cell-specific. At the cellular level, the labelling appeared markedly increased in neurons (8-10 fold in ventromedial striatum and CA1 region) and, to a lesser extent, in non-neuronal cells. The increase in SSAT mRNA levels was not directly related to cell degeneration, as it was detected in both some vulnerable and some resistant cell populations. However, the peak increase of SSAT labelling was precocious in resistant neurons (such as those of ventromedial striatum and dentate gyrus granular layer) and delayed or very limited in vulnerable neurons (such as those of CA1 pyramidal layer and dorsolateral striatum). The increase in spermidine/spermine N1-acetyltransferase may contribute to the increase in putrescine and decrease in spermidine levels observed after ischemia and gives further support to the notion that polyamine metabolism in the early phase after lesion is oriented towards putrescine production. This phenomenon could be relevant in determining the prevalence of neurotrophic vs. neurotoxic effects of polyamines.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge