English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2007-Nov

Spermidine/spermine N(1)-acetyltransferase-1 binds to hypoxia-inducible factor-1alpha (HIF-1alpha) and RACK1 and promotes ubiquitination and degradation of HIF-1alpha.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jin H Baek
Ye V Liu
Karin R McDonald
Jacob B Wesley
Huafeng Zhang
Gregg L Semenza

Keywords

Abstract

Hypoxia-inducible factor-1 (HIF-1) is a master regulator of oxygen homeostasis that controls the expression of genes encoding proteins that play key roles in angiogenesis, erythropoiesis, and glucose/energy metabolism. The stability of the HIF-1alpha subunit is regulated by ubiquitination and proteasomal degradation. In aerobic cells, O(2)-dependent prolyl hydroxylation of HIF-1alpha is required for binding of the von Hippel-Lindau tumor suppressor protein VHL, which then recruits the Elongin C ubiquitin-ligase complex. SSAT2 (spermidine/spermine N-acetyltransferase-2) binds to HIF-1alpha and promotes its ubiquitination/degradation by stabilizing the interaction of VHL and Elongin C. Treatment of cells with heat shock protein HSP90 inhibitors induces the degradation of HIF-1alpha even under hypoxic conditions. HSP90 competes with RACK1 for binding to HIF-1alpha, and HSP90 inhibition leads to increased binding of RACK1, which recruits the Elongin C ubiquitin-ligase complex to HIF-1alpha in an O(2)-independent manner. In this work, we demonstrate that SSAT1, which shares 46% amino acid identity with SSAT2, also binds to HIF-1alpha and promotes its ubiquitination/degradation. However, in contrast to SSAT2, SSAT1 acts by stabilizing the interaction of HIF-1alpha with RACK1. Thus, the paralogs SSAT1 and SSAT2 play complementary roles in promoting O(2)-independent and O(2)-dependent degradation of HIF-1alpha.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge