English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacy and Pharmacology 1993-Jul

Spontaneous formation of small sized albumin/acacia coacervate particles.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
D J Burgess
O N Singh

Keywords

Abstract

Microgel coacervate particles form spontaneously on mixing aqueous solutions of oppositely charged albumin and acacia, under specific conditions of pH, ionic strength, and polyion concentration, close to but not at the optimum conditions for maximum coacervate yield. The mean particle diameter of these coacervate particles is approximately 6 microns when suspended in aqueous media, as determined by HIAC/Royco particle analysis. The geometric standard deviation of the particles falls in the range 1.2-1.9 microns. The particle size was not dependent on the method of emulsification of the coacervate in the equilibrium phase, or on the stirring speed applied during the manufacturing process. The microgel particles were stable on storage, for periods up to forty-six days, without the addition of a chemical cross-linking agent, or the application of heat. Stability was measured with respect to the change in particle size of samples stored at different temperatures. The non-cross-linked microcapsules were also shown to be stable on pH change, to pH values outside the coacervation pH range. At the optimum conditions for maximum coacervate yield the albumin/acacia system formed a very viscous coacervate phase, which was unsuitable for microcapsule preparation. The rheological properties of albumin/acacia and gelatin/acacia complex coacervates optimized for maximum coacervate yield were compared. The albumin/acacia coacervate was shown to be three orders of magnitude more viscous than the gelatin/acacia system.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge