English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Biochemistry and Biophysics 1984-Nov

Stability of the complex formed between French bean (Phaseolus vulgaris) phenylalanine ammonia-lyase and its transition-state analog.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
D H Jones
D H Northcote

Keywords

Abstract

Phenylalanine ammonia-lyase forms trans-cinnamate from L-phenylalanine, and thus stands at a gateway to secondary metabolism in higher plants. L-alpha-Amino-oxy-beta-phenylpropanoic acid (L-AOPP), a very effective competitive inhibitor of this enzyme, is most probably a transition-state analog for the elimination reaction. A preparation of phenylalanine ammonia-lyase (PAL), obtained from diluted suspension cultures of French bean cells, was used to investigate the binding of this compound in vitro. After extensive dialysis, the inhibitor remained tightly bound to the enzyme unless both an increased temperature and L-phenylalanine were provided, when the spectrophotometer trace of enzyme activity gradually approached linearity. Under such optimal catalytic conditions (37 degrees C; 25 mM L-phenylalanine; pH 8.8), dissociation of the enzyme-ligand complex took place with a half-time of approx 10 min. (This is much longer than reported for the enzyme from maize.) The consequences of these findings are discussed for investigations where L-AOPP is applied in vivo. These experiments have shown that the irreversible binding of the transition-state analog under appropriate conditions (0-4 degrees C, no L-phenylalanine) gave continued protection against attack on the enzyme by an excess of borohydride. By titrating the enzyme with increasing concentrations of analog and measuring the degree of protection afforded, the active-site concentration has been estimated. The turnover number (kcat = 0.8 s-1) given by this novel approach is of the same order of magnitude as previously reported from extensive purification of enzyme from other species.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge