English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
New Phytologist 2014-Apr

Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yukari Kuga
Naoya Sakamoto
Hisayoshi Yurimoto

Keywords

Abstract

The objective of this study was to elucidate the transfer of nutrient elements in orchid symbiotic protocorms at the cellular level by imaging of stable isotope tracers. We address the long-standing question of whether nutrients move by transport across the symbiotic interface or solely by lysis of fungal pelotons. [U-(13) C]glucose and (15) NH4 (15) NO3 were added to Ceratobasidium sp. hyphae extending from symbiotic protocorms of Spiranthes sinensis. Isotope images were taken from resin-embedded sections of protocorms using ultra-high spatial resolution secondary ion mass spectrometry (SIMS). Analyses of regions of interest were conducted on isotope ratio images for fungal and host structures. Amyloplasts adjacent to young pelotons showed elevated (13) C/(12) C, which indicated that fungal carbon (C) was transferred from live hyphae. Senescent pelotons and their surrounding host cytoplasm showed significantly higher isotope ratios than young pelotons and surrounding host cytoplasm. These results indicate an inflow of C to senescent hyphae, which was then transferred to the host. The findings of this study provide some support for each of the two contradictory hypotheses concerning nutrient exchange in the symbiotic protocorm: the interface between the symbionts is involved before fungal senescence, and peloton degradation also releases a significant amount of C and nitrogen to host cells.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge