English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Hepatology Research 2018-Oct

Stevia prevents experimental cirrhosis by reducing hepatic myofibroblasts and modulating molecular profibrotic pathways.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Erika Ramos-Tovar
Laura D Buendia-Montaño
Silvia Galindo-Gómez
Erika Hernández-Aquino
Víctor Tsutsumi
Pablo Muriel

Keywords

Abstract

OBJECTIVE

The aims of the present study were to investigate the capacity of stevia leaves to prevent experimental cirrhosis induced by chronic administration of carbon tetrachloride (CCl4 ) in rats and to explore the action mechanism involved.

METHODS

Liver cirrhosis was established by CCl4 treatment (400 mg/kg i.p. three times a week for 12 weeks); stevia powder was administered (100 mg/kg by gavage daily) during the CCl4 treatment. Serum markers of liver damage and hydroxyproline were evaluated and histopathological analyses were carried out. The profibrotic pathways were analyzed by western blot and immunohistochemistry.

RESULTS

We found for the first time that stevia cotreatment prevented the elevation of serum markers of necrosis and cholestasis and the occurrence of liver fibrosis. It is worth noting that stevia downregulated several profibrogenic pathways, including the reduction of hepatic myofibroblasts and decreased matrix metalloproteinase (MMP)2 and MMP13 expression, thereby blocking the liberation of transforming growth factor-β from the extracellular matrix. Notably, stevia reduced the phosphorylation of pSmad3L, the most profibrogenic and mitogenic Smad, by inhibiting the activation of c-Jun N-terminal kinase and extracellular signal-regulated kinase. Interestingly, Smad7, an important antifibrotic molecule, was upregulated by stevia treatment in cirrhotic rats. These multitarget mechanisms led to the prevention of experimental cirrhosis.

CONCLUSIONS

Because stevia possesses a reasonable safety profile, our results indicate that it could be useful in the clinical setting to treat chronic liver diseases.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge