English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Pharmacologica Sinica 2010-Apr

Stimulation of the adenosine A3 receptor reverses vascular hyporeactivity after hemorrhagic shock in rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Rong Zhou
Feng Chen
Qiang Li
De-yao Hu
Liang-ming Liu

Keywords

Abstract

OBJECTIVE

To investigate whether adenosine A(3) receptors (A(3)AR) stimulation restore vascular reactivity after hemorrhagic shock through a ryanodine receptor (RyR)-mediated and large conductance calcium-activated potassium (BK(Ca)) channel-dependent pathway.

METHODS

Rat hemorrhagic shock model (40 mmHg) and vascular smooth muscle cell (VSMC) hypoxic model were used. The expression of A(3)AR was determined by Western blot and RT-PCR. The effect of A(3)AR stimulation on RyR-mediated Ca(2+) release in VSMCs was analyzed by the Fura-3/AM loading Ca(2+) imaging. The modulation of vascular reactivity to norepinephrine (NE) by A(3)AR stimulation was monitored by an isolated organ tension instrument.

RESULTS

Decrease of A(3)AR expression is consistent with the loss of vasoreactivity to NE in hemorrhagic shock rats. The stimulation of A(3)AR with a selective agonist, IB-MECA, could partly but significantly restore the vasoreactivity in the rats, and this restorative effect could be counteracted by MRS1523, a selective A(3)AR antagonist. In hypoxic VSMCs, RyR activation by caffeine significantly evoked the rise of [Ca(2+)] compared with the control cells, a phenomenon closely associated with the development of vascular hyporeactivity in hemorrhagic shock rats. The stimulation of A(3)AR with IB-MECA significantly blocked this over activation of RyR-mediated Ca(2+) release. RyR activation by caffeine and BK(Ca) channel activation by NS1619 attenuated the restoration of vasoreactivity to NE resulting from A(3)AR stimulation by IB-MECA after hemorrhagic shock; this attenuation effect could be antagonized by a selective BK(Ca) channel blocker.

CONCLUSIONS

These findings suggest that A(3)AR is involved in the modulation of vasoreactivity after hemorrhagic shock and that stimulation of A(3)AR can restore the decreased vasoreactivity to NE through a RyR-mediated, BK(Ca) channel-dependent signal pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge