English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Acta Biomaterialia 2016-05

Stimulatory effect of cobalt ions incorporated into calcium phosphate coatings on neovascularization in an in vivo intramuscular model in goats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zeinab Tahmasebi Birgani
Eelco Fennema
Marion J Gijbels
Jan de Boer
Clemens A van Blitterswijk
Pamela Habibovic

Keywords

Abstract

Rapid vascularization of bone graft substitutes upon implantation is one of the most important challenges to overcome in order to achieve successful regeneration of large, critical-size bone defects. One strategy for stimulating vascularization during the regeneration process is to create a hypoxic microenvironment by either directly lowering the local oxygen tension, or by applying hypoxia-mimicking factors. Cells compensate for the hypoxic condition by releasing angiogenic factors leading to new blood vessel formation. In the present study, we explored the potential of cobalt ions (Co(2+)), known chemical mimickers of hypoxia, to stimulate vascularization within a bone graft substitute in vivo. To this end, Co(2+) ions were incorporated into calcium phosphate (CaPs) coatings deposited on poly(lactic acid) (PLA) particles with their effect on the formation of new blood vessels studied upon intramuscular implantation in goats. PLA particles and CaP-coated particles without Co(2+) ions served as controls. Pathological scoring of the inflammatory response following a 12-week implantation period showed no significant differences between the four types of materials. Based on histological and immunohistochemical analyses, both blood vessel area and number of blood vessels in CaP-coated PLA particles containing Co(2+) were higher than in the uncoated PLA particles and CaP-coated PLA particles without Co(2+). Analysis of blood vessel size distribution indicated abundant formation of small blood vessels in all the samples, while large blood vessels were predominantly found in PLA particles coated with CaP containing Co(2+) ions. The results of this study support the use of CaPs containing Co(2+) ions to enhance vascularization in vivo.

In this work, we have investigated the potential of cobalt ions, incorporated into thin calcium phosphate (CaP) coatings that were deposited on particles of poly(lactic acid) (PLA), to induce neovascularization in vivo. Qualitative and quantitative histological and immunohistochemical analyses showed that both the number of blood vessels and the total blood vessel area were higher in CaP-coated PLA particles containing cobalt ions as compared to the uncoated PLA particles and CaP-coated PLA particles without the metallic additive. Furthermore, a wider distribution of blood vessel sizes, varying from very small to large vessels was specifically observed in samples containing cobalt ions. This in vivo study will significantly contribute to the existing knowledge on the use of bioinorganics, which are simple and inexpensive inorganic factors that can be used to control relevant biological process during tissue regeneration, such as vascularization. As such, we are convinced that this manuscript will be of interest to the readers of Acta Biomaterialia.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge