English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemistry - A European Journal 2017-May

Structural Studies of Nicotinoids: Cotinine versus Nicotine.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Iciar Uriarte
Cristóbal Pérez
Elena Caballero-Mancebo
Francisco J Basterretxea
Alberto Lesarri
José A Fernández
Emilio J Cocinero

Keywords

Abstract

Nicotinoids are agonists of the acetylcholine receptor (nAChR) and play important biochemical and pharmacological roles. Herein, we report on the structure and conformation of cotinine, and compare its molecular properties with the nicotine prototype, from which it only differs in the addition of a carbonyl group. This investigation included a theoretical survey of the effects of rotamerization of the pyridine moiety, the puckering of the pyrrolidinone ring and the internal rotation of the methyl group. The experimental work examined the rotational spectrum of the molecule in a supersonic expansion, using both broadband chirped-pulse excitation techniques and cavity microwave spectrometers. Two conformers were observed for cotinine, and the fine and hyperfine structures arising from the two quadrupolar 14 N nuclei and the methyl internal rotor were fully analyzed. The two observed conformers share the same twisted conformation of the five-membered ring, but differ in a roughly 180° rotamerization around the C-C bond connecting the two rings. The energy barriers for the internal rotation of the methyl group in cotinine (4.55(4) and 4.64(3) kJ mol-1 , respectively) are much lower than in nicotine (estimated in 16.5 kJ mol-1 ). The combination of different intramolecular electronic effects, hydrogen bonding and possible binding differences to receptor molecules arising from the carbonyl group could explain the lower affinity of cotinine for nAChRs.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge