English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology 2007-Jul

Structural composition and anticoagulant activity of dermatan sulfate from the skin of the electric eel, Electrophorus electricus (L.).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Maisa L S Souza
João M M Dellias
Fábio R Melo
Luiz-Claudio F Silva

Keywords

Abstract

We determined the disaccharide composition of dermatan sulfate (DS) purified from the skin of the electric eel Electrophorus electricus. DS obtained from the electric eel was composed of non-sulfated, mono-sulfated disaccharides bearing esterified sulfate groups at positions C-4 or C-6 of N-acetyl galactosamine (GalNAc), and disulfated disaccharides bearing esterified sulfate groups at positions C-2 of the uronic acid and at position C-4 or C-6 of GalNAc. The anticoagulant, antithrombotic and bleeding effects of electric eel skin DS were compared to those of porcine DS and also to those described previously for DS purified from skin of eel, Anguilla japonica. DS from electric eel is a potent anticoagulant due to a high heparin co-factor II (HC II) activity. The electric eel DS has a higher potency to prevent thrombus formation on an experimental model and a lower bleeding effect in rats than the porcine DS. Interestingly, it was recently demonstrated that DS obtained from skin of the eel Anguilla japonica, which possesses a disaccharide composition very similar to that of electric eel skin DS described here, did not show anticoagulant activity. Thus, the anticoagulant activity of electric eel skin DS is not merely a consequence of its charge density. We speculate that the differences among the anticoagulant activities of these three DS may be related to different arrangements of the disulfated disaccharide domain for binding to HC II within their polysaccharide chains and that it may be more efficiently arranged along the carbohydrate chain in electric eel skin DS than in the two other types of DS.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge