English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Virology 1998-Apr

Structural homology of the central conserved region of the attachment protein G of respiratory syncytial virus with the fourth subdomain of 55-kDa tumor necrosis factor receptor.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J P Langedijk
B L de Groot
H J Berendsen
J T van Oirschot

Keywords

Abstract

The attachment protein G of respiratory syncytial virus (RSV) has a modular architecture. The ectodomain of the protein comprises a small folded conserved region which is bounded by two mucin-like regions. In this study, a sequence and structural homology is described between this central conserved region of RSV-G and the fourth subdomain of the 55-kDa tumor necrosis factor receptor (TNFr). The three-dimensional structures of RSV-G and human TNFr were previously determined with NMR spectroscopy and X-ray crystallography, respectively. The C-terminal part of both subdomains fold into a cystine noose connected by two cystine bridges with the same spacing between cysteine residues and the same topology. Although a general structural similarity is observed, there are differences in secondary structure and other structural features. Molecular Dynamics calculations show that the BRSV-G NMR structure of the cystine noose is stable and that the TNFr crystal structure of the cystine noose drifts towards the BRSV-G NMR structure in the simulated solution environment. By homology modelling a model was built for the unresolved N-terminal part of the central conserved region of RSV-G. The functions for both protein domains are not known but the structural similarity of both protein domains suggests a similar function. Although the homology suggests that the cystine noose of RSV-G may interfere with the antiviral and apoptotic effect of TNF, the biological activity remains to be proven.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge