English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 2010-Aug

Structure-mutagenicity relationship of kaurenoic acid from Xylopia sericeae (Annonaceae).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
B C Cavalcanti
J R O Ferreira
D J Moura
R M Rosa
G V Furtado
R R Burbano
E R Silveira
M A S Lima
C A G Camara
J Saffi

Keywords

Abstract

Kaurane diterpenes are considered important compounds in the development of new highly effective anticancer chemotherapeutic agents. Genotoxic effects of anticancer drugs in non-tumour cells are of special significance due to the possibility that they induce secondary tumours in cancer patients. In this context, we evaluated the genotoxic and mutagenic potential of the natural diterpenoid kaurenoic acid (KA), i.e. (-)-kaur-16-en-19-oic acid, isolated from Xylopia sericeae St. Hill, using several standard in vitro and in vivo protocols (comet, chromosomal aberration, micronucleus and Saccharomyces cerevisiae assays). Also, an analysis of structure-activity relationships was performed with two natural diterpenoid compounds, 14-hydroxy-kaurane (1) and xylopic acid (2), isolated from X. sericeae, and three semi-synthetic derivatives of KA (3-5). In addition, considering the importance of the exocyclic double bond (C16) moiety as an active pharmacophore of KA cytotoxicity, we also evaluated the hydrogenated derivative of KA, (-)-kauran-19-oic acid (KAH), to determine the role of the exocyclic bond (C16) in the genotoxic activity of KA. In summary, the present study shows that KA is genotoxic and mutagenic in human peripheral blood leukocytes (PBLs), yeast (S. cerevisiae) and mice (bone marrow, liver and kidney) probably due to the generation of DNA double-strand breaks (DSB) and/or inhibition of topoisomerase I. Unlike KA, compounds 1-5 and KAH are completely devoid of genotoxic and mutagenic effects under the experimental conditions used in this study, suggesting that the exocyclic double bond (C16) moiety may be the active pharmacophore of the genetic toxicity of KA.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge