English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical and Pharmaceutical Bulletin 2002-Feb

Studies of rapidly disintegrating tablets in the oral cavity using co-ground mixtures of mannitol with crospovidone.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Toshifusa Shu
Hideshi Suzuki
Kenji Hironaka
Kunio Ito

Keywords

Abstract

We attempted the development of rapid oral disintegration tablets by direct compression using co-ground mixture of D-mannitol and crospovidone. The co-ground mixture was prepared with a vibration rod mill. The tablets were formed by compression using a single punch-tableting machine after addition of the co-ground mixture to non-ground D-mannitol, crospovidone and magnesium stearate. Regarding the properties of tablets, hardness and the time of disintegration were measured. The particle diameter and specific surface area of the co-ground mixture were measured. The tablets manufactured from a physical mixture of 30% (w/w) co-ground mixture of D-mannitol and crospovidone (mixed ratio 9 :1) with 65.5% (w/w) of non-ground mannitol, 4% (w/w) of crospovidone, and 0.5% (w/w) of magnesium stearate had good properties for rapidly disintegrating tablets in the oral cavity. They showed the hardness of 4.9 kg and disintegration time of 33 s. We found that adding co-ground mixture of D-mannitol and crospovidone is useful in enhancing hardness of the tablets that could not be achieved by addition of their individually ground mixture. The improvement in the hardness of the tablets was also observed when other saccharides and disintegrants were used. This method was proved to be applicable in the manufacture of tables of ascorbic acid, a water-soluble drug and nifedipine, a slightly water soluble drug; and the dissolution rate of nifedipine from the tablets in water was remarkably improved. The particle sizes of D-mannitol in the co-ground mixture were smaller than that of the individually ground mixture, resulting in a larger specific surface area of the co-ground mixture than that of the individually ground mixture. Therefore, it was presumed that crospovidone acted as a grinding assistant for D-mannitol in the co-grinding process, enhancing the hardness of tablets by increasing the contact area among powder particles.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge