English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytotherapy Research 2015-Jun

Studies on Bronchodilator Activity of Salvia officinalis (Sage): Possible Involvement of K+ Channel Activation and Phosphodiesterase Inhibition.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Anwarul-Hassan Gilani
Najeeb-Ur Rehman
Aslam Khan
Khalid M Alkharfy

Keywords

Abstract

The aqueous methanolic extract of the aerial parts of Salvia officinalis (So.Cr) was studied to provide possible underlying mechanism(s) for its medicinal use in asthma using the in vivo bronchodilatory assay and isolated tracheal preparations. S. officinalis (1-10 mg/kg) dose-dependently inhibited carbachol (CCh)-induced bronchospasm in anesthetized rats with three-fold greater potency than the positive control, aminophylline. In tracheal preparations, So.Cr inhibited the low K+ (25 mM)-induced contractions. Pretreatment of the tissues with 4-aminopyridine reversed the inhibitory effect of the plant extract against low K+ , whereas glibenclamide did not show any effect, thus showing the involvement of voltage-sensitive K+ channels. When tested against the CCh-induced pre-contractions for the involvement of any additional mechanism, interestingly, the extract showed a dose-dependent (0.03-0.1 mg/mL) inhibitory effect and shifted the inhibitory concentration response curves of isoprenaline to the left, thus showing phosphodiesterase enzyme inhibitory-like action, similar to that of papaverine. These results indicate that the crude extract of S. officinalis possesses bronchodilatory activity mediated predominantly via activation of voltage-dependent K+ channels and inhibition of phosphodiesterase enzyme; thus, this study provides sound pharmacological basis for its medicinal use in hyperactive airways disorders such as asthma and cough. Copyright © 2015 John Wiley & Sons, Ltd.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge