English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1987-Aug

Studies on genetic male-sterile soybeans : v. Effects of male-sterility on the function and glycerolipid composition of chloroplast thylakoids.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J J Burke
W Kalt-Torres
J W Burton
R F Wilson

Keywords

Abstract

Soybean (Glycine max L. Merr.) germplasm, isogenic except for loci controlling male sterility (ms(1)), was utilized to study the effects of reproductive development on certain aspects of photosynthesis. Plants were sampled at various times between flowering (77 days after transplanting) and maturity (147 days after transplanting). During that period photosynthetic rates declined more rapidly in the male-sterile genotypes than male-fertile genotypes; and after 105 days, the sterile genotypes maintained low but relatively constant carbon exchange rates. The decline of leaf photosynthesis in the male-sterile genotype occurred concomitantly with an inhibition of the photosynthetic electron transport chain associated with photosystem II. Changes in photosystem I activities, cytochrome f levels, and chlorophyll a/b ratios per se were not responsible for the decline in whole leaf photosynthesis. These conditions were independent of the source of nitrogen nutrition. Lipid analyses of the thylakoids revealed that a loss of phosphatidylglycerol was highly correlated with the inhibition of photosystem II activity. These results suggested a relation between the decline in leaf carbon exchange and the decline in photosynthetic electron transport activity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge