English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Saudi Journal of Biological Sciences 2019-Nov

Study of functional and physiological response of co-occurring shrub species to the Mediterranean climate.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Daniela Ciccarelli
Stefania Bottega
Carmelina Spanò

Keywords

Abstract

The Mediterranean basin is characterised by increasingly dry summers and the study of the adaptive traits developed by plants living in this stressful environment is of great interest, also in relation to climate projections for this area. Cistus monspeliensis, Myrtus communis and Phillyrea angustifolia are three co-occurring shrubs typical of the Mediterranean maquis. Their functional and physiological parameters were studied in spring, summer and autumn in order to highlight adjustments of these traits and to test eventual different adaptive strategies. Soil and leaf chemical characteristics were determined in the different seasons. Leaf area, specific leaf area, leaf dry matter content, succulence index, pigment contents hydric status and main markers of oxidative stress and antioxidant response were detected. The stressful summer season induced disturbance in hydric balance, decrease in succulence index and chlorophyll content and high contents of hydrogen peroxide. Thanks to higher enzymatic activities and total glutathione content, in the two evergreen species M. communis and P. angustifolia oxidative damage remained at levels equal to or lower than the other seasons. Only in the semideciduous C. monspeliensis both functional and biochemical traits showed a higher stress condition in summer. The higher stability of functional traits in the two evergreen species may be explained by the sclerophyllous nature of their leaves. Four environmental variables - Tmax, Tmin, soil conductivity and organic matter - mostly influenced NMDS segregation of these species.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge