English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied Microbiology and Biotechnology 2016-Jan

Substrate preference of citrus naringenin rhamnosyltransferases and their application to flavonoid glycoside production in fission yeast.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Takao Ohashi
Yuka Hasegawa
Ryo Misaki
Kazuhito Fujiyama

Keywords

Abstract

Flavonoids, which comprise a large family of secondary plant metabolites, have received increased attention in recent years due to their wide range of features beneficial to human health. One of the most abundant flavonoid skeletons in citrus species is the flavanone naringenin, which is accumulated as glycosides containing terminal rhamnose (Rha) after serial glycosylation steps. The linkage type of Rha residues is a determining factor in the bitterness of the citrus fruit. Such Rha residues are attached by either an α1,2- or an α1,6-rhamnosyltransferase (1,2RhaT or 1,6RhaT). Although the genes encoding these RhaTs from pummelo (Citrus maxima) and orange (Citrus sinensis) have been functionally characterized, the details of the biochemical characterization, including the substrate preference, remain elusive due to the lack of availability of the UDP-Rha required as substrate. In this study, an efficient UDP-Rha in vivo production system using the engineered fission yeast expressing Arabidopsis thaliana rhamnose synthase 2 (AtRHM2) gene was constructed. The in vitro RhaT assay using the constructed UDP-Rha revealed that recombinant RhaT proteins (Cm1,2RhaT; Cs1,6RhaT; or Cm1,6RhaT), which were heterologously produced in fission yeast, catalyzed the rhamnosyl transfer to naringenin-7-O-glucoside as an acceptor. The substrate preference analysis showed that Cm1,2RhaT had glycosyl transfer activity toward UDP-xylose as well as UDP-Rha. On the other hand, Cs1,6RhaT and Cm1,6RhaT showed rhamnosyltransfer activity toward quercetin-3-O-glucoside in addition to naringenin-7-O-glucoside, indicating weak specificity toward acceptor substrates. Finally, naringin and narirutin from naringenin-7-O-glucoside were produced using the engineered fission yeast expressing the AtRHM2 and the Cm1,2RhaT or the Cs1,6RhaT genes as a whole-cell-biocatalyst.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge