English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1991-Jul

Sucrose-Induced Accumulation of beta-Amylase Occurs Concomitant with the Accumulation of Starch and Sporamin in Leaf-Petiole Cuttings of Sweet Potato.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K Nakamura
M A Ohto
N Yoshida
K Nakamura

Keywords

Abstract

beta-Amylase of sweet potato (Ipomoea batatas L.), which constitutes about 5% of the total soluble protein of the tuberous root, is absent or is present in only small amounts in organs other than the tuberous roots of the normal, field-grown plants. However, when leaf-petiole cuttings from such plants were supplied with a solution that contained sucrose, the accumulation of beta-amylase was induced in both leaf and petiole portions of the explants. The sucrose-induced accumulation of beta-amylase in leaf-petiole cuttings occurred concomitant with the accumulation of starch and of sporamin, the most abundant storage protein of the tuberous root. The accumulation of beta-amylase, of sporamin and of starch in the petioles showed similar dependence on the concentration of sucrose, and a 6% solution of sucrose gave the highest levels of induction when assayed after 7 days of treatment. The induction of mRNAs for beta-amylase and sporamin in the petiole could be detected after 6 hours of treatment with sucrose, and the accumulation of beta-amylase and sporamin polypeptides, as well as that of starch, continued for a further 3 weeks. In addition to sucrose, glucose or fructose, but not mannitol or sorbitol, also induced the accumulation of beta-amylase and sporamin, suggesting that metabolic effects of sucrose are important in the mechanism of this induction. Treatment of leaf-petiole cuttings with water under continuous light, but not in darkness, also caused the accumulation of small amounts of these components in the petioles, probably as a result of the endogenous supply of sucrose by photosynthesis. These results suggest that the expression of the gene for beta-amylase is under metabolic control which is coupled with the expression of sink function of cells in the sweet potato.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge