English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives de Pediatrie 2016-Mar

[Sulfite oxidase activity deficiency caused by cofactor molybdenum deficiency: A case of early severe encephalopathy].

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C Durousset
C Gay
S Magnin
C Acquaviva
H Patural

Keywords

Abstract

Neonatal seizure incidence is approximately 3.5/1000 live births. Inborn metabolic diseases account for approximately 1-4% of neonatal seizure cases. Among them, the catabolism anomaly of sulfite to sulfate caused by sulfite oxidase or cofactor molybdenum deficiency (MoCD) is a rare metabolic disorder in which neurological damage is similar to that found in neonatal asphyxia. We report the case of a newborn child with a MoCD. Born of related parents, this child had intrauterine growth retardation predominating on size diagnosed in the third trimester of pregnancy. After an uneventful birth, he presented convulsions at the 12th hour of life, confirmed by an electroencephalogram. Anticonvulsants and adjuvant treatments were ineffective; the child then required intubation at day 5 of life. The initial biological assessment found an elevated blood lactate level and the chromatography of amino acids showed a significant decrease of cystine and the abnormal presence of sulfocysteine, suggestive of a lack of sulfite oxidase activity. The uric acid level measured secondarily was low, suggesting a MoCD. Brain MRI was performed at day 5 for diffuse ischemic injury of different ages. After limiting acute care, the child died at day 14 of life. The genetic study of the child found a homozygous mutation c.564+1G>A in the MOCS2 gene, confirming the diagnosis of MoCD, present in the heterozygous state in both parents. Investigations in a logical sequence quickly suggested the MoCD diagnosis in presence of a low plasma concentration of cysteine, the abnormal presence of sulfocysteine, and low uric acid levels. The diagnosis of sulfite oxidase deficiency was made. Until now, no treatment has proven effective but a new treatment appears to be effective in cases with a MOCS1 mutation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge