English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2008-Nov

Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Christina Lunde
Agnieszka Zygadlo
Henrik Toft Simonsen
Per Lassen Nielsen
Andreas Blennow
Anna Haldrup

Keywords

Abstract

Sulfur-deficient plants generate a lower yield and have a reduced nutritional value. The process of sulfur acquisition and assimilation play an integral role in plant metabolism, and response to sulfur deficiency involves a large number of plant constituents. Rice (Oryza sativa) is the second most consumed cereal grain, and the effects of sulfur deprivation in rice were analyzed by measuring changes in photosynthesis, carbohydrate metabolism, and antioxidants. The photosynthetic apparatus was severely affected under sulfur deficiency. The Chl content was reduced by 49% because of a general reduction of PSII and PSI and the associated light-harvesting antenna. The PSII efficiency was 31% lower at growth light, and the ability of PSI to photoreduce NADP+ was decreased by 61%. The Rubisco content was also significantly reduced in the sulfur-deprived plants. The imbalances between PSII and PSI, and between photosynthesis and carbon fixation led to a general over-reduction of the photosynthetic electron carriers (higher 1-q(P)). Chromatographic analysis showed that the level of monosaccharides was lower and starch content higher in the sulfur-deprived plants. In contrast, no changes in metabolite levels were found in the tricarboxylic acid or Calvin cycle. The level of the thiol-containing antioxidant, GSH, was 70% lower and the redox state was significantly more oxidized. These changes in GSH status led to an upregulation of the cytosolic isoforms of GSH reductase and monodehydroascorbate reductase. In addition, alternative antioxidants like flavonoids and anthocyanins were increased in the sulfur-deprived plants.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge