English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1993-Dec

Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
B D McKersie
Y Chen
M de Beus
S R Bowley
C Bowler
D Inzé
K D'Halluin
J Botterman

Keywords

Abstract

Activated oxygen or oxygen free radicals have been implicated in a number of physiological disorders in plants including freezing injury. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide into O2 and H2O2 and thereby reduces the titer of activated oxygen molecules in the cell. To further examine the relationship between oxidative and freezing stresses, the expression of SOD was modified in transgenic alfalfa (Medicago sativa L.). The Mn-SOD cDNA from Nicotiana plumbaginifolia under the control of the cauliflower mosaic virus 35S promoter was introduced into alfalfa using Agrobacterium tumefaciens-mediated transformation. Two plasmid vectors, pMitSOD and pChlSOD, contained a chimeric Mn-SOD construct with a transit peptide for targeting to the mitochondria or one for targeting to the chloroplast, respectively. The putatively transgenic plants were selected for resistance to kanamycin and screened for neomycin phosphotransferase activity and the presence of an additional Mn-SOD isozyme. Detailed analysis of a set of four selected transformants indicated that some had enhanced SOD activity, increased tolerance to the diphenyl ether herbicide, acifluorfen, and increased regrowth after freezing stress. The F1 progeny of one line, RA3-ChlSOD-30, were analyzed by SOD isozyme activity, by polymerase chain reaction for the Mn-SOD gene, and by polymerase chain reaction for the neo gene. RA3-ChlSOD-30 had three sites of insertion of pChlSOD, but only one gave a functional Mn-SOD isozyme; the other two were apparently partial insertions. The progeny with a functional Mn-SOD transgene had more rapid regrowth following freezing stress than those progeny lacking the functional Mn-SOD transgene, suggesting that Mn-SOD serves a protective role by minimizing oxygen free radical production after freezing stress.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge