English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Biotechnology Journal 2012-Dec

Suppression of α-amylase genes improves quality of rice grain ripened under high temperature.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Makoto Hakata
Masaharu Kuroda
Tomomi Miyashita
Takeshi Yamaguchi
Mikiko Kojima
Hitoshi Sakakibara
Toshiaki Mitsui
Hiromoto Yamakawa

Keywords

Abstract

High temperature impairs rice (Oryza sativa) grain filling by inhibiting the deposition of storage materials such as starch, resulting in mature grains with a chalky appearance, currently a major problem for rice farming in Asian countries. Such deterioration of grain quality is accompanied by the altered expression of starch metabolism-related genes. Here we report the involvement of a starch-hydrolyzing enzyme, α-amylase, in high temperature-triggered grain chalkiness. In developing seeds, high temperature induced the expression of α-amylase genes, namely Amy1A, Amy1C, Amy3A, Amy3D and Amy3E, as well as α-amylase activity, while it decreased an α-amylase-repressing plant hormone, ABA, suggesting starch to be degraded by α-amylase in developing grains under elevated temperature. Furthermore, RNAi-mediated suppression of α-amylase genes in ripening seeds resulted in fewer chalky grains under high-temperature conditions. As the extent of the decrease in chalky grains was highly correlated to decreases in the expression of Amy1A, Amy1C, Amy3A and Amy3B, these genes would be involved in the chalkiness through degradation of starch accumulating in the developing grains. The results show that activation of α-amylase by high temperature is a crucial trigger for grain chalkiness and that its suppression is a potential strategy for ameliorating grain damage from global warming.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge