English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2009-Nov

Suppression of human T-cell leukemia virus I gene expression by pokeweed antiviral protein.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Sheila Mansouri
Gunjan Choudhary
Paulina M Sarzala
Lee Ratner
Katalin A Hudak

Keywords

Abstract

Human T-cell leukemia virus I (HTLV-I) is a deltaretrovirus that is the causative agent of adult T-cell leukemia and the neurological disorder HTLV-I-associated myelopathy/tropical spastic paraparesis. Currently, no effective antiretroviral treatment options are available to restrict the development of diseases associated with the virus. In this work, we investigated the activity of pokeweed antiviral protein (PAP) on HTLV-I, when expressed from a proviral clone in 293T cells or in an HTLV-I immortalized cell line. PAP is a plant-derived N-glycosidase that exhibits antiviral activity against a number of viruses; however, its mode of action has not been clearly defined. Here, we describe the mechanism by which PAP inhibited production of HTLV-I. We show that PAP depurinated nucleotides within the gag open reading frame and suppressed the synthesis of viral proteins in part by decreasing the translational efficiency of HTLV-I gag/pol mRNA. Observed reduction in levels of viral mRNAs were not due to enhanced degradation; rather, decreased amounts of viral transactivator protein, Tax, led to feed-back inhibition of transcription from the viral promoter. Therefore, PAP efficiently suppressed HTLV-I gene expression at both translational and transcriptional levels, resulting in substantially diminished virus production. Significantly, no changes in viability or rates of cellular transcription or translation were observed in cells expressing PAP, indicating that this protein was not toxic. Antiviral activity, together with the absence of cytotoxicity, supports further investigation of this enzyme as a novel therapeutic agent against the progression of HTLV-I infection.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge