English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
IET Nanobiotechnology 2019-Feb

Sustainable green synthesis of silver nanoparticles by using Rangoon creeper leaves extract and their spectral analysis and anti-bacterial studies.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Arun Birusanti
Umamahesh Mallavarapu
Devanna Nayakanti
Chandra Espenti
Sreenivasulu Mala

Keywords

Abstract

The plant-based biological molecules possess exceptionally controlled assembling properties to make them suitable in the synthesis of metal nanoparticles. In the present study, an efficient simple one-pot method was employed for the synthesis of silver nanoparticles (SNPs) from the Rangoon creeper (RC) aqueous leaf extract. Biomolecules present in the leaf extract play a significant role as reducing agent as well as capping agent in the formation of RC-SNPs. The formation of RC-SNPs was confirmed by using several analytical techniques such as Fourier-transform infrared spectroscopy and ultraviolet-visible spectrophotometer studies. The presence of a sharp surface plasmon resonance peak at 449 nm showed the formation of RC-SNPs. X-ray diffraction analysis showed the crystalline nature of the RC-SNPs with a face-centred cubic structure. Elemental analysis of RC-SNPs was done by using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The morphology of RC-SNPs was examined by transmission electron microscopy (TEM) in the nano range 12 nm, and thermogravimetric-differential thermal analysis demonstrated the mechanical strength of RC-SNPs at various temperatures. The authors' newly synthesised RC-SNPs exhibited significant anti-bacterial activity against Staphylococcus aureus and Escherichia coli.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge