English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 1996-Oct

Synergistic activation of interleukin-8 gene transcription by all-trans-retinoic acid and tumor necrosis factor-alpha involves the transcription factor NF-kappaB.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
H Harant
R de Martin
P J Andrew
E Foglar
C Dittrich
I J Lindley

Keywords

Abstract

Induction of interleukin-8 (IL-8) by IL-1 or tumor necrosis factor (TNF), and repression by interferons or glucocorticoids have been shown to involve sequences between nucleotides -94 and -71 of the 5'-flanking region, and the transcription factors NF-IL-6 and NF-kappaB. The A3 cell line was derived from the human melanoma cell line G-361 by stable transfection with part of the IL-8 promoter (nucleotides -101 to +40 from transcription start) fused to the luciferase coding region. These regulatory sequences were sufficient for transcriptional activation by all-trans-retinoic acid (ATRA), 9-cis-retinoic acid, IL-1beta, or TNF-alpha. Simultaneous treatment of A3 cells with ATRA and TNF-alpha resulted in a dose- and time-dependent synergistic increase in luciferase expression and IL-8 mRNA levels. Transient transfections of the parental cell line demonstrated that the NF-kappaB binding site is essential for this synergistic transactivation. Electrophoretic mobility shift assays with nuclear extracts of A3 cells showed that stimulation with ATRA and TNF-alpha for more than 16 h resulted in enhanced NF-kappaB binding compared to that induced by TNF-alpha alone. The simultaneous treatment with ATRA and TNF-alpha also resulted in changes in the composition of NF-kappaB complexes bound to the IL-8 NF-kappaB site, preventing the formation of two TNF-alpha-inducible binding activities. We suggest that these complexes consist of repressive factors which, when removed, allow enhanced binding of NF-kappaB to its cognate site.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge