English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Materials Science and Engineering C 2017-Nov

Synergistic effects of Woodfordia fruticosa gold nanoparticles in preventing microbial adhesion and accelerating wound healing in Wistar albino rats in vivo.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Navdeep Raghuwanshi
Poonam Kumari
Amit Kumar Srivastava
Priya Vashisth
Tara Chand Yadav
Ramasare Prasad
Vikas Pruthi

Keywords

Abstract

Therapeutic effectiveness of biogenically synthesized Woodfordia fruticosa nano-gold particles (WfAuNPs) has been claimed in this study which prevents microbial adhesion and enhanced wound healing potential on Wistar albino rats. The synthesized WfAuNPs were characterized using several biophysical techniques such as UV-Visible Spectroscopy (UV-vis), X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FE-SEM), Atomic Force Microscopy (AFM) and High Resolution Transmission Electron Microscopy (HR-TEM) analysis. The synthesized WfAuNPs in the size range of 10-20nm were used to develop 1% Carbopol® 934 based nano gold formulation (WfAuNPs-Carbopol® 934). The WfAuNPs-Carbopol® 934 nanoformulation was evaluated using viscosity and spreadability measurements. The wound healing potential of WfAuNPs-Carbopol® 934 monitored up to 12days was confirmed by performing wound contraction (%), epithelialization, and histopathological studies done in vivo on Wistar albino rats. The hydroxyproline content was also measured in the re-epithelized skin for quantification of collagen content. The effects of WfAuNPs on microbial adhesion leading to biofilm formation were evaluated against Candida albicans and Cryptococcus neoformans fungal strains. The respective Minimum Inhibitory Concentration (MIC80), Biofilm Inhibitory Concentration (BIC80) and Biofilm Eradication Concentration (BEC80) values of C. albicans was found to be 16, 32, 256μg/ml respectively while for C. neoformans it was recorded to be 32, 64, 256μg/ml respectively. Data obtained, confirmed the effectiveness in preventing microbial adhesion and wound healing potential of the WfAuNPs as compared to current marketed formulations.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge