English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Medicinal Chemistry 1997-Jan

Syntheses and structure-activity relationships of taxoids derived from 14 beta-hydroxy-10-deacetylbaccatin III.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
I Ojima
J C Slater
S D Kuduk
C S Takeuchi
R H Gimi
C M Sun
Y H Park
P Pera
J M Veith
R J Bernacki

Keywords

Abstract

A series of new taxoids derived from 14 beta-hydroxy-10-deacetylbaccatin III was synthesized by means of the beta-lactam synthon method. Most of the new taxoids thus synthesized possess excellent cytotoxicity against human ovarian (A121), non-small-cell lung (A549), colon (HT-29), and breast (MCF-7) cancer cell lines, and several of these taxoids show subnanomolar IC50 values which are severalfold to 1 order of magnitude better than those of paclitaxel and docetaxel. Modifications at the 3'- and 3'-N-positions exert marked effects on the activity. For the substituents at C-3', the cytotoxicity decreases in the order 2-furyl approximately 2-methyl-1-propenyl > or = 2-methylpropyl > (E)-1-propenyl > or = n-propyl > phenyl > > 2,2-dimethylpropyl. For the 3'-N substituents, the activity decreases in the order t-BuOCO > Ph > n-hexanoyl. A significant increase in the cytotoxicity against the doxorubicin-resistant human breast cancer cell line MCF7-R that expresses the multidrug resistance (MDR) phenotype is observed by the proper modification of the substituent at C-10. The observed remarkable effects of the substituents at C-10 on the activity against MCF7-R can be ascribed to the effective inhibition of the binding of these new taxoids to P-glycoprotein that is responsible for MDR.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge