English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemical biology & drug design 2009-Apr

Synthesis, biological evaluation, mechanism of action and quantitative structure-activity relationship studies of chalcones as antibacterial agents.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ponnurengam Malliappan Sivakumar
Sobana Priya
Mukesh Doble

Keywords

Abstract

Forty-eight chalcone analogs were synthesized and their in vitro antibacterial activity against Staphylococcus aureus NCIM 5021, Bacillus subtilis NCIM 2718, Phaseolus vulgaris NCIM 2813, Escherichia coli NCIM 2931, Salmonella typhi 2501 and Enterobacter aerogenes NCIM 5139 were evaluated by microdilution broth assay. Quantitative structure-activity relationships were developed for all the cases (r(2) = 0.68-0.79; r(2)(adj) = 0.58-0.78; q(2) = 0.51-0.68; F = 13.02-61.51). Size, polarizability, electron-donating/withdrawing and hydrophilic nature of the molecule determine the activity against these Gram-positive and Gram-negative bacteria. Staphylococcus aureus was the most and S. typhi was the least hydrophobic of these organisms. These chalcones act better against more hydrophobic organisms. The more active chalcones have log P between 1.5 and 3. Compound 24, one of the most active compounds, was found to act by damaging the cell wall of S. aureus. Slimicidal activity of five of the most active compounds (24, 31, 32, 34 and 37) was found to be in the range of 48-60% against S. aureus and 40-54% against E. coli. A correlation was observed among the hydrophobicity of the compounds, hydrophobicity of the bacterial cell surface and the antibacterial activity of the compound.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge