English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology in Vitro 2007-Dec

(+)-Syringaresinol-di-O-beta-D-glucoside, a phenolic compound from Acanthopanax senticosus Harms, suppresses proinflammatory mediators in SW982 human synovial sarcoma cells by inhibiting activating protein-1 and/or nuclear factor-kappaB activities.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
T Yamazaki
S Shimosaka
H Sasaki
T Matsumura
T Tukiyama
T Tokiwa

Keywords

Abstract

(+)-Syringaresinol-di-O-beta-D-glucoside (SR), syringin, and isofraxidin isolated from the stem bark of Acanthopanax senticosus Harms are its major constituents. The present work was undertaken to analyze effects of these compounds on inflammatory functions in SW982 human synovial sarcoma cell system. When cells were exposed to SR, syringin, or isofraxidin, only isofraxidin had significant inhibitory effects on cell growth, although a slight inhibition was observed at the highest concentration of SR. SR suppressed the production of IL-6 at lower concentrations than syringin and isofraxidin. SR and syringin significantly suppressed the production of prostaglandin E(2), while isofraxidin suppressed only slightly. SR was more potent than syringin and isofraxidin at inhibiting the expression of IL-1beta, IL-6, cyclooxygenase (COX)-2 and matrix metalloproteinases (MMP)-1 mRNA, but was less potent than syringin at inhibiting the expression of MMP-2. We further demonstrated that SR significantly reduced MMP-1 promoter luciferase activity and DNA-binding activity of transcriptional factors AP-1 and NF-kappaB. Taken together, these results suggest that SR, an active component of the stem bark of A. senticosus, modulates the inflammatory process involved in arthritis by suppressing various gene expression through inhibiting AP-1 and/or NF-kappaB activities.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge