English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology in Vitro 2012-Oct

T-2 toxin enhances catabolic activity of hypertrophic chondrocytes through ROS-NF-κB-HIF-2α pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Juan Tian
Jidong Yan
Wei Wang
Nannan Zhong
Lifang Tian
Jian Sun
Zixin Min
Jie Ma
Shemin Lu

Keywords

Abstract

T-2 toxin (T-2), one of the most important and toxic trichothecene mycotoxins, can cause many medical problems, such as diarrhea, nervous disorders, immunodepression and death, and is also believed as an etiological factor of Kashin-Beck disease, an endemic osteochondropathy prevailing in North China. However, the molecular mechanisms underlying T-2 effects on tissue damage remain elusive. We differentiated ATDC5 chondrogenic cells into hypertrophic chondrocytes, and found that T-2 reduced the expression of anabolic genes, and increased the expression of catabolic genes. To uncover the mechanism that T-2 influenced metabolic homeostasis of hypertrophic chondrocytes, we observed that T-2 increased the production of reactive oxygen species (ROS) and the degradation of IκB-α, and up-regulated the expression of hypoxia-induced factor-2α (HIF-2α). Bay11-7085 (an inhibitor of NF-κB pathway) inhibited the up-regulation of HIF-2α, and N-acetyl-l-cysteine (a ROS scavenger) inhibited both the decrease of IκB-α and the up-regulation of HIF-2α. Our results demonstrate that ROS-NF-κB-HIF-2α pathway participates in the effects of T-2 on hypertrophic chondrocytes, and HIF-2α plays an important role as a key mediator in this process.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge