English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacy and Pharmaceutical Sciences 2018

Targeted Nanostructured Lipid Carrier for Brain Delivery of Artemisinin: Design, Preparation, Characterization, Optimization and Cell Toxicity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jaber Emami
Hessam Yousefian
Hojjat Sadeghi

Keywords

Abstract

In the present study, a transferrin-conjugated nanostructured lipid carrier (TF-NLCs) for brain delivery of artemisinin (ART) was developed. ART-loaded NLCs (ART-NLCs) were prepared using solvent evaporation method and the impact of various formulation or process variables on the responses were assessed using a Taguchi design. Optimized ART-NLC was then coupled with transferrin as targeting ligand and its in vitro cytotoxicity was investigated against U-87MG brain cancer cell line. As a result, the following values are suggested by the software to prepare the optimized formulation: 20 mg Compritol®, 0.25% Tween 80, 5 mg oleic acid, 2.5 mL dichloromethane and 4 min sonication. Mean particle size (PS), zeta potential (ZP), polydispersity index (PDI), entrapment efficiency (EE), mean release time (MRT) of adopted formulation were confirmed to be 145 ± 12.5 nm, 24.3 ± 1.5 mV, 0.513 ± 0.021, 82.3 ± 7.3 % and 24.0 ± 1.1 h, respectively. Following conjugation of optimized ART-NLCs with TF, PS and MRT were increased, while ZP, and EE were decreased significantly. TF-ART-NLCs showed higher cytotoxic activity compared to non-targeted NLCs and free drug. These results indicated that the TF-ART-NLCs could potentially be exploited as a delivery system for anticancer and antimalarial drug ART in brain tumors and malaria.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge