English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neurological Sciences 2008-Oct

Targeting reactive oxygen species, reactive nitrogen species and inflammation in MPTP neurotoxicity and Parkinson's disease.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hironori Yokoyama
Hayato Kuroiwa
Ryohei Yano
Tsutomu Araki

Keywords

Abstract

Parkinson's disease (PD) is the second most frequent neurodegenerative disorder after Alzheimer's disease. The main clinical features of PD include tremor, bradykinesia, rigidity and postural instability. The primary pathology of PD is degeneration of dopaminergic neurons in the substantia nigra pars compacta, resulting in loss of the nigrostriatal pathway and a reduction of dopamine contents in the striatum. The biochemical and cellular changes that occur following the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are remarkably similar to that seen in idiopathic PD. Recent evidence shows that oxidative stress contributes to the cascade leading to dopaminergic cell degeneration in PD. However, oxidative stress is intimately linked to other components of neurodegenerative process, such as nitric oxide stress and inflammation. Recently, there is convincing evidence for the involvement of nitric oxide that reacts with superoxide to produce peroxynitrite and ultimately hydroxyl radical production. In view of these new insights, however, the role of reactive nitrogen species, reactive oxygen species and inflammation against MPTP neurotoxicity is not fully understood. In this review, we discuss the possible role of reactive nitrogen species, reactive oxygen species and inflammation in the dopaminergic neurons against MPTP neurotoxicity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge