English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Steroid Biochemistry and Molecular Biology 2018-Jul

Testosterone complex and non-steroidal ligands of human aromatase.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Debashis Ghosh
Chinaza Egbuta
Jessica Lo

Keywords

Abstract

Cytochrome P450 aromatase (AROM) catalyzes the biosynthesis of estrogen from androgen. Previously crystal structures of human AROM in complex with the substrate androstenedione, and inhibitors exemestane, as well as the newly designed steroidal compounds, have been reported. Here we report the first crystal structure of testosterone complex of human placental AROM. Testosterone binds at the androgen-specific heme distal pocket. The polar and hydrophobic interactions with the surrounding residues resemble the interactions observed for other ligands. The heme proximal region comprises the intermolecular interface in AROM, and also the putative interaction surface of its redox partner cytochrome P450 reductase. Unreported previously, the proximal region is characterized by a large surface cavity, unlike most known P450's. Using five best X-ray data sets from androstenedione and testosterone complexes of AROM, we now unequivocally show the presence of an unexplained ligand electron density inside the proximal cavity. The density is interpreted as ordered five ethylene glycol units of polyethylene glycols used as a solvent for steroids and also in crystallization. Interestingly, polyethylene glycol exhibits weak inhibition of AROM enzyme activity in a time dependent manner. Besides its critical role in the redox partner coupling and electron transfer process, the proximal cavity possibly serves as the interaction site for other molecules that may have regulatory effects on AROM activity. In addition, the new data also reveal a previously unidentified water channel linking the active site to the lipid interface. The channel could be the predicted passage for water molecules involved in catalysis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge