English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Biology 1998-Sep

The Antirrhinum ERG gene encodes a protein related to bacterial small GTPases and is required for embryonic viability.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
G C Ingram
R Simon
R Carpenter
E S Coen

Keywords

Abstract

Small GTPases have diverse roles in animals and yeast, including signal transduction, regulation of secretion, organisation of the cytoskeleton, and control of cell division. Similar GTPases have also been found in bacteria, such as the Escherichia coli GTPase ERA, which is involved in regulating metabolism and cell division [1,2]. Many small GTPases have been cloned from plants but their functional analysis has largely been limited to complementation of mutations in corresponding yeast genes, and antisense experiments which have implicated these proteins in processes such as root nodulation [3,4]. No mutations in plant GTPases have been reported, and thus their true importance in plant growth and development is unknown. Here we report the isolation of a gene from Antirrhinum majus encoding a protein from an entirely novel class of eukaryotic GTPases showing strongest similarity to the prokaryotic protein ERA. We have named this gene ERG (for ERA-related GTPase). The ERG gene is expressed in dividing or metabolically active cells. We generated a deletion allele of ERG by site-selected transposon mutagenesis and have shown that seeds containing embryos and endosperm homozygous for this deletion arrest soon after fertilisation. We conclude that ERG has a crucial role in plant growth and development, possibly by influencing mitochondrial division.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge