English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Mechanisms of Development

The Ca2+-dependent protease Calpain A regulates Cactus/I kappaB levels during Drosophila development in response to maternal Dpp signals.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Fontenele
K Carneiro
R Agrellos
D Oliveira
A Oliveira-Silva
V Vieira
E Negreiros
E Machado
H Araujo

Keywords

Abstract

Regulation of NF kappaB activity is central to many processes during development and disease. Activation of NF kappaB family members depends on degradation of inhibitory I kappaB proteins. In Drosophila, a nuclear gradient of the NF kappaB/c-rel protein Dorsal subdivides the embryonic dorsal-ventral axis, defining the extent and location of mesodermal and ectodermal territories. Activation of the Toll pathway directs Dorsal nuclear translocation by inducing proteosomal degradation of the I kappaB homologue Cactus. Another mechanism that impacts on Dorsal activation involves the Toll-independent pathway, which regulates constitutive Cactus degradation. We have shown that the BMP protein Decapentaplegic (Dpp) inhibits Cactus degradation independent of Toll. Here we report on a novel element of this pathway: the calcium-dependent protease Calpain A. Calpain A knockdowns increase Cactus levels, shifting the Dorsal gradient and dorsal-ventral patterning. As shown for mammalian I kappaB, this effect requires PEST sequences in the Cactus C-terminus, implying a conserved role for calpains. Alteration of Calpain A or dpp results in similar effects on Dorsal target genes. Epistatic analysis confirms Calpain A activity is regulated by Dpp, indicating that Dpp signals increase Cactus levels through Calpain A inhibition, thereby interfering with Dorsal activation. This mechanism may allow coordination of Toll, BMP and Ca(2+) signals, conferring precision to Dorsal-target expression domains.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge