English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2015-Oct

The Identification of Maize and Arabidopsis Type I FLAVONE SYNTHASEs Links Flavones with Hormones and Biotic Interactions.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
María Lorena Falcone Ferreyra
Julia Emiliani
Eduardo José Rodriguez
Valeria Alina Campos-Bermudez
Erich Grotewold
Paula Casati

Keywords

Abstract

Flavones are a major group of flavonoids with diverse functions and are extensively distributed in land plants. There are two different classes of FLAVONE SYNTHASE (FNS) enzymes that catalyze the conversion of the flavanones into flavones. The FNSI class comprises soluble Fe(2+)/2-oxoglutarate-dependent dioxygenases, and FNSII enzymes are oxygen- and NADPH-dependent cytochrome P450 membrane-bound monooxygenases. Here, we describe the identification and characterization of FNSI enzymes from maize (Zea mays) and Arabidopsis (Arabidopsis thaliana). In maize, ZmFNSI-1 is expressed at significantly higher levels in silks and pericarps expressing the 3-deoxy flavonoid R2R3-MYB regulator P1, suggesting that ZmFNSI-1 could be the main enzyme for the synthesis of flavone O-glycosides. We also show here that DOWNY MILDEW RESISTANT6 (AtDMR6), the Arabidopsis homologous enzyme to ZmFNSI-1, has FNSI activity. While dmr6 mutants show loss of susceptibility to Pseudomonas syringae, transgenic dmr6 plants expressing ZmFNSI-1 show similar susceptibility to wild-type plants, demonstrating that ZmFNSI-1 can complement the mutant phenotype. AtDMR6 expression analysis showed a tissue- and developmental stage-dependent pattern, with high expression in cauline and senescing leaves. Finally, we show that Arabidopsis cauline and senescing leaves accumulate apigenin, demonstrating that Arabidopsis plants have an FNSI activity involved in the biosynthesis of flavones. The results presented here also suggest cross talk between the flavone and salicylic acid pathways in Arabidopsis; in this way, pathogens would induce flavones to decrease salicylic acid and, hence, increase susceptibility.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge