English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 2001-Dec

The K+ channel SKT1 is co-expressed with KST1 in potato guard cells--both channels can co-assemble via their conserved KT domains.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S Zimmermann
S Hartje
T Ehrhardt
G Plesch
B Mueller-Roeber

Keywords

Abstract

An appreciable number of potassium channels mediating K+ uptake have been identified in higher plants. Promoter-beta-glucuronidase reporter gene studies were used here to demonstrate that SKT1, encoding a potato K+ inwardly rectifying channel, is expressed in guard cells in addition to KST1 previously reported. However, whereas KST1 was found to be expressed in essentially all mature guard cells, SKT1 expression was almost exclusively restricted to guard cells of the abaxial leaf epidermis. This suggests that different types of K+ channel subunits contribute to channel formation in potato guard cells and therefore differential regulation of stomatal movements in the two leaf surfaces. The overlapping expression pattern of SKT1 and KST1 in abaxial guard cells indicates that K+in channels of different sub-families contribute to ionic currents in this cell type, thus explaining the different properties of channels expressed solely in heterologous systems and those endogenous to guard cells. Interaction studies had previously suggested that plant K+ inward rectifiers form clusters via their conserved C-terminal domain, KT/HA. K+ channels co-expressed in one cell type may therefore form heteromers, which increase functional variability of K+ currents, a phenomenon well described for animal voltage-gated K+ channels. Co-expression of KST1 and SKT1 in Xenopus oocytes resulted in currents with an intermediate sensitivity towards Cs+, suggesting the presence of heteromers, and a sensitivity towards external Ca2+, which reflected the property of the endogenous K+in current in guard cells. Modulation of KST1 currents in oocytes by co-expressing KST1 with a SKT1 pore-mutant, which by itself was not able to confer activating K+ currents, demonstrated the possibility that KST1 and SKT1 co-assemble to hetero-oligomers. Furthermore, various C-terminal deletions of the mutated SKT1 channel restored KST1 currents, showing that the C-terminal KT motif is essential for heteromeric channel formation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge