English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Pharmacology 2009-Sep

The Na+/Ca2+ exchange inhibitor 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)isothiourea methanesulfonate (KB-R7943) also blocks ryanodine receptors type 1 (RyR1) and type 2 (RyR2) channels.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Genaro Barrientos
Diptiman D Bose
Wei Feng
Isela Padilla
Isaac N Pessah

Keywords

Abstract

Na(+)/Ca(2+) exchanger (NCX) is a plasma membrane transporter that moves Ca(2+) in or out of the cell, depending on membrane potential and transmembrane ion gradients. NCX is the main pathway for Ca(2+) extrusion from excitable cells. NCX inhibitors can ameliorate cardiac ischemia-reperfusion injury and promote high-frequency fatigue of skeletal muscle, purportedly by inhibiting the Ca(2+) inward mode of NCX. Here we tested two known NCX inhibitors, 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)-isothiourea methanesulfonate (KB-R7943) and the structurally related 2-[[4-[(4-Nitrophenyl)methoxy]phenyl]methyl]-4-thiazoli dinecarboxylic acid ethyl ester (SN-6), for their influence on electrically or caffeine-evoked Ca(2+) transients in adult dissociated flexor digitorum brevis (FDB) skeletal muscle fibers and human embryonic kidney (HEK) 293 cells that have stable expression of type 1 ryanodine receptor (RyR1). KB-R7943 (< or = 10 microM) reversibly attenuates electrically evoked Ca(2+) transients in FDB and caffeine-induced Ca(2+) release in HEK 293, whereas the structurally related NCX inhibitor SN-6 does not, suggesting that KB-R7943 directly inhibits RyR1. In support of this interpretation, KB-R7943 inhibits high-affinity binding of [(3)H]ryanodine to RyR1 (IC(50) = 5.1 +/- 0.9 microM) and the cardiac isoform RyR2 (IC(50) = 13.4 +/- 1.8 microM). KB-R7943 interfered with the gating of reconstituted RyR1 and RyR2 channels, reducing open probability (P(o)), shortening mean open time, and prolonging mean closed time. KB-R7943 was more effective at blocking RyR1 with cytoplasmic conditions favoring high P(o) compared with those favoring low P(o). SN-6 has negligible activity toward altering [(3)H]ryanodine binding of RyR1 and RyR2. Our results identify that KB-R7943 is a reversible, activity-dependent blocker of the two most broadly expressed RyR channel isoforms and contributes to its pharmacological and therapeutic activities.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge