English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Neuroscience 2019-Aug

The P429L loss of function mutation of the human glycine transporter 2 associated with hyperekplexia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Alexandra Kitzenmaier
Natascha Schaefer
Vikram Kasaragod
Tilman Polster
Ralph Hantschmann
Hermann Schindelin
Carmen Villmann

Keywords

Abstract

Glycine transporter 2 (GlyT2) mutations across the entire sequence have been shown to represent the presynaptic component of the neurological disease hyperekplexia. Dominant, recessive and compound heterozygous mutations have been identified, most of them leading to impaired glycine uptake. Here, we identified a novel loss of function mutation of the GlyT2 resulting from an amino acid exchange of proline 429 to leucine in a family with both parents being heterozygous carriers. A homozygous child suffered from severe neuromotor deficits. We characterised the GlyT2P429L variant at the molecular, cellular and protein level. Functionality was determined by glycine uptake assays. Homology modelling revealed that the mutation localises to α-helix 5, presumably disrupting the integrity of this α-helix. GlyT2P429L shows protein trafficking through various intracellular compartments to the cellular surface. However, the protein expression at the whole cell level was significantly reduced. Although present at the cellular surface, GlyT2P429L demonstrated a loss of protein function. Coexpression of the mutant with the wild-type protein, reflecting the situation in the parents, did not affect transporter function, thus explaining their non-symptomatic phenotype. Nevertheless, when the mutant was expressed in excess compared with the wild-type protein, glycine uptake was significantly reduced. Thus, these data demonstrate that the proline residue at position 429 is structurally important for the correct formation of α-helix 5. The failure in functionality of the mutated GlyT2 is most probably due to structural changes localised in close proximity to the sodium-binding site of the transporter.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge