English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Theory and Computation 2014-Aug

The Pathway for O2 Diffusion inside CotA Laccase and Possible Implications on the Multicopper Oxidases Family.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
João M Damas
António M Baptista
Cláudio M Soares

Keywords

Abstract

Laccases and multicopper oxidases (MCOs) oxidize a wide range of organic compounds while reducing O2 to water, enabling numerous biotechnological applications. It is still unknown how O2 reaches the internalized catalytic center of MCOs where it gets reduced, despite a proposed channel inferred from X-ray crystallography structures. Herein, an alternative new pathway is found through the use of a combination of free energy calculations (implicit ligand sampling), landscape analysis, and Markov modeling. The reported pathway is shown to be the one mostly contributing to O2 reaching the catalytic center. This pathway is considered in light of the whole MCO family, and a relation to the protonation state of a structurally conserved acidic residue right above the center is advanced.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge