English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Inflammation 2019-Sep

The Presence of High Levels of Circulating Trimethylamine N-Oxide Exacerbates Central and Peripheral Inflammation and Inflammatory Hyperalgesia in Rats Following Carrageenan Injection.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yanan Zhang
Chunlian Zhang
Haiou Li
Jingdong Hou

Keywords

Abstract

Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to promote inflammation in peripheral tissues and the central nervous system (CNS), contributing to the pathogenesis of various human diseases. Here, we examined whether the presence of high levels of circulating TMAO would influence central and peripheral inflammation and inflammatory hyperalgesia in a carrageenan (CG)-induced rat model of inflammation. Rats were treated with vehicle or TMAO in drinking water. After 2 weeks of treatment, rats received intraplantar injection of saline or CG into the hind paw. Acute nociception was unaltered in TMAO-treated rats that had elevated plasma TMAO. Following CG injection, TMAO-treated rats were significantly more sensitive to thermal and mechanical stimulation of the inflamed paw and displayed greater paw edema. Molecular studies revealed that CG injection induced increases in recruitment of neutrophils/macrophages in the paw and activation of microglia in the spinal cord, along with increased activation of nuclear factor (NF)-kB and production of proinflammatory mediators in both vehicle-treated rats and TMAO-treated rats. However, the increases in the above parameters were more pronounced in TMAO-treated rats. Moreover, TMAO treatment decreased protein levels of anti-inflammatory mediator regulator of G protein signaling (RGS)-10 in both saline-injected rats and CG-injected rats. These findings suggest that the presence of high levels of circulating TMAO downregulates anti-inflammatory mediator RGS10 in both peripheral tissues and the CNS, which may increase the susceptibility to inflammatory challenge-induced NF-kB activity, leading to greater increase in production of inflammatory mediators and consequent exacerbation of peripheral inflammation and inflammatory hyperalgesia.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge