English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Seminars in Cardiothoracic and Vascular Anesthesia 2014-Sep

The Role of Cyclooxygenase-1 and -2 in Sevoflurane-Induced Postconditioning Against Myocardial Infarction.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jan Stumpner
Tobias Tischer-Zeitz
Anja Frank
Christopher Lotz
Andreas Redel
Markus Lange
Franz Kehl
Norbert Roewer
Thorsten Smul

Keywords

Abstract

Cyclooxygenase (COX)-2 mediates ischemic pre- and postconditioning as well as anesthetic-induced preconditioning. However, the role of COX-1 and -2 in anesthetic-induced postconditioning has not been investigated. We evaluated the role of COX-1 and -2 in sevoflurane-induced postconditioning in vivo. Pentobarbital-anaesthetized male C57BL/6 mice were subjected to 45 minutes of coronary artery occlusion and 3 hours of reperfusion. Animals received either no intervention, the vehicle dimethyl sulfoxide (DMSO, 10 µL/g intraperitoneally), acetylsalicylic acid (ASA, 5 µg/g intraperitoneally), the selective COX-1 inhibitor SC-560 (10 µg/g intraperitoneally), or the selective COX-2 inhibitor NS-398 (5 µg/g intraperitoneally). 1.0 MAC (minimum alveolar concentration) sevoflurane was administered for 18 minutes during early reperfusion either alone or in combination with ASA, SC-560, and NS-398. Infarct size was determined with triphenyltetrazolium chloride. Statistical analysis was performed using 1-way and 2-way analyses of variance with post hoc Duncan testing. The infarct size in the control group was 44% ± 9%. DMSO (42% ± 7%), ASA (36% ± 6%), and NS-398 (44% ± 18%) had no effect on infarct size. Sevoflurane (17% ± 4%; P < .05) and SC-560 (26% ± 10%; P < .05) significantly reduced the infarct size compared with control condition. Sevoflurane-induced postconditioning was not abolished by ASA (16% ± 5%) and SC-560 (22% ± 4%). NS-398 abolished sevoflurane-induced postconditioning (33% ± 14%). It was concluded that sevoflurane induces postconditioning in mice. Inhibition of COX-1 elicits a myocardial infarct size reduction and does not abolish sevoflurane-induced postconditioning. Blockade of COX-2 abolishes sevoflurane-induced postconditioning. These results indicate that sevoflurane-induced postconditioning is mediated by COX-2.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge