English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Journal 1973-Aug

The acute action of ammonia on rat brain metabolism in vivo.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
R A Hawkins
A L Miller
R C Nielsen
R L Veech

Keywords

Abstract

1. Acute NH(4) (+) toxicity was studied by using a new apparatus that removes and freezes the brains of conscious rats within 1s. 2. Brains were removed and frozen 5min after intraperitoneal injection of ammonium acetate (2-3min before the onset of convulsions). Arterial [NH(4) (+)] rose from less than 0.01 to 1.74mm at 4-5min. The concentrations of all glycolytic intermediates measured, except glucose 6-phosphate, were increased by the indicated percentage above the control value as follows: glucose (by 41%), fructose 1,6-diphosphate (by 133%), dihydroxyacetone phosphate (by 164%), alpha-glycerophosphate (by 45%), phosphoenolpyruvate (by 67%) and pyruvate (by 26%). 4. Citrate and alpha-oxoglutarate concentrations were unchanged and that of malate was increased (by 17%). 5. Adenine nucleotides and P(i) concentrations were unchanged but the concentration of creatine phosphate decreased slightly (by 6%). 6. Brain [NH(4) (+)] increased from 0.2 to 1.53mm. Net glutamine synthesis occurred at an average rate of 0.33mumol/min per g. 7. The rate of brain glucose utilization was measured in vivo as 0.62mumol/min per g in controls and 0.81mumol/min per g after NH(4) (+) injection. 8. The arteriovenous difference of glucose and O(2) increased by 35%. 9. No significant arteriovenous differences of glutamate or glutamine were detected. Thus, although much NH(4) (+) was incorporated into glutamine the latter was not rapidly released from the brain to the circulation. 10. Plasma [K(+)] increased from 3.3 to 5.4mm. 11. The results indicate that NH(4) (+) stimulates oxidative metabolism but does not interfere with brain energy balance. The increased rate of oxidative metabolism could not be accounted for only on the basis of glutamine synthesis. We suggest that increased extracellular [NH(4) (+)] and [K(+)] decreased the resting transmembrane potential and stimulated Na(+),K(+)-stimulated adenosine triphosphatase activity thus accounting for the increased metabolic rate.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge