English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Life Sciences 1985-Feb

The biochemical and behavioral effects of phospholipase A2 and morphine microinjections in the periaqueductal gray of the rat.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M Reichman
L G Abood
M Costanzo

Keywords

Abstract

In order to characterize the in vivo action of phospholipase A2 (PLA2) on opiate receptors and opiate-induced behaviors, the effects of injections of PLA2 into the periaqueductal gray region (PAG) of the rat were assessed on free fatty acid (FFA) release, opiate-binding levels, and morphine-induced behaviors. Rats received bilateral PAG injections of 2 micrograms of PLA2 while anesthetized. One hour later, regions around the cannulae tracts in PLA2-treated rats contained over 2.5 times more FFA than saline-injected controls, and 3H-dihydromorphine binding was reduced on average more than 70%. In another series of experiments, conscious rats were given 2 micrograms of PLA2 prior to 10 micrograms of morphine through cannulae chronically implanted into the PAG. PLA2 did not significantly attenuate morphine-induced analgesia as measured by the tail-flick test to radiant heat, but did prevent the explosive motor behavior observed following morphine injections alone. PLA2 by itself did not induce analgesia, but did cause explosive motor behavior 2 hr after the injections. Neither lysophosphatidylcholine nor trypsin resulted in motor seizures following PAG injections. It was concluded that the behavioral effects of PLA2 result from the unique properties of the enzyme, rather than generalized membrane damage, and that the opioid sites and mechanisms that mediate analgesia are different from those associated with explosive motor behavior.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge