English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bulletin of the World Health Organization 1990

The conformational restriction of synthetic vaccines for malaria.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A C Satterthwait
L C Chiang
T Arrhenius
E Cabezas
F Zavala
H J Dyson
P E Wright
R A Lerner

Keywords

Abstract

The effectiveness of synthetic vaccines is dependent upon the chance event that antibodies formed against largely disordered peptides can bind native protein surfaces which are often ordered. To improve on this situation, new methods are being developed for the conformational restriction of synthetic peptides. Cognate peptide sequences often form predictable secondary structures in proteins characterized by distinct hydrogen-bonding patterns. These weak hydrogen bonds have now been replaced with covalent mimics to conformationally restrict selected peptides to the Type 1 reverse turn and alpha helix. Potential uses for this chemistry are discussed in the context of malaria vaccines. The peptide component of a Plasmodium falciparum sporozoite vaccine, acetyl-(ASN-ALA-ASN-PRO)3-NH2 has been conformationally analysed using two-dimensional nuclear magnetic resonance spectroscopy. These studies are consistent with the formation of transiently ordered turnlike structures which provide a guide for the design and synthesis of a conformationally restricted synthetic vaccine. To assess the effects of conformational restriction and chemical modification on the sporozoite vaccine, ASN side-chains were linked around proline with ethylene bridges. Polyclonal antibodies to this shaped peptide show a strong cross-reaction with living sporozoites.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge