English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2015-Jan

The defense potential of glutathione-ascorbate dependent detoxification pathway to sulfur dioxide exposure in Tagetes erecta.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Aili Wei
Baochun Fu
Yunshan Wang
Rui Li
Chao Zhang
Dongmei Cao
Xiaobing Zhang
Jiuju Duan

Keywords

Abstract

Sulfur dioxide (SO2) exposure is associated with increased risk of various damages to plants. However, little is known about the defense response in ornamental plants. In this study, an artificial fumigation protocol was carried out to study the defense potential of the glutathione (GSH)-ascorbate (AsA) dependent detoxification pathway to SO2 exposure in Tagetes erecta. The results show that when the plants were exposed to different doses of SO2 (0, 15, 30, 50 or 80 mg m(-3)) for different times (6, 12, 18, 24 or 33 h), SO2 induced oxidative stress was confirmed by the increased hydrogen peroxide (H2O2), malondialdehyde (MDA) and relative conductivity of membrane (RC) in a dose-dependent manner for different exposure times. However, the increased levels for H2O2, MDA and RC were not significant vis-a-vis the control when SO2 doses and exposure times were lower than 15 mg m(-3)/33 h, 30 mg m(-3)/24 h or 50 mg m(-3)/12 h (p>0.05). The results could be explained by the increases in the content of reduced form of glutathione (GSH), total glutathione (TGSH), ascorbate (AsA), ratio of GSH/GSSG (oxidized form of glutathione), activities of ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferases (GST). On the other hand, exposure to higher doses of SO2 and longer exposure times, the values of the GSH-AsA dependent antioxidative indices decreased significantly (p<0.01), manifested by increased levels of H2O2. Furthermore, the levels of H2O2, MDA and RC varied little when SO2 doses and exposure times reached a 'critical' value (50 mg m(-3)/24 h). The defense ability of T. erecta to SO2 reached nearly extremity. To summarize, the response of T. erecta to elevated SO2 was related to higher H2O2 levels. GSH-AsA dependent detoxification pathway played an important role in against SO2-induced toxicity, although the defense response could not sufficiently alleviate oxidative damage when SO2 doses and exposure times reached critical value.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge