English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
American Journal of Botany 2013-Aug

The desert moss Pterygoneurum lamellatum (Pottiaceae) exhibits an inducible ecological strategy of desiccation tolerance: effects of rate of drying on shoot damage and regeneration.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lloyd R Stark
Joshua L Greenwood
John C Brinda
Melvin J Oliver

Keywords

Abstract

OBJECTIVE

Bryophytes include clades that incorporate constitutive desiccation tolerance, especially terrestrial species. Here we test the hypothesis that the opposing ecological strategy of desiccation tolerance, inducibility, is present in a desert moss, and address this hypothesis by varying rates of drying in a laboratory study. Desiccation tolerance is arguably the most important evolutionary innovation relevant to the colonization of land by plants; increased understanding of the ecological drivers of this trait will eventually illuminate the responsible mechanisms and ultimately open doors to the potential for the application of this trait in cultivated plants.

METHODS

Plants were cloned, grown in continuous culture (dehardened) for several months, and subjected to rates of drying (drying times) ranging from 30 min to 53 h, rehydrated and tested for recovery using chlorophyll fluorescence, leaf damage, and regeneration of protonema and shoots.

RESULTS

Rate of drying significantly affected all recovery responses, with very rapid drying rates severely damaging the entire shoot except the shoot apex and resulting in slower growth rates, fewer regenerative shoots produced, and a compromised photosynthetic system as inferred from fluorescence parameters.

CONCLUSIONS

For the first time, a desert moss is shown to exhibit an ecological strategy of desiccation tolerance that is inducible, challenging the assumption that arid-land bryophytes rely exclusively on constitutive protection. Results indicate that previous considerations defining a slow-dry event in bryophytes need reevaluation, and that the ecological strategy of inducible desiccation tolerance is probably more common than currently understood among terrestrial bryophytes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge