English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Virology 1995-Dec

The dual-specificity phosphatase encoded by vaccinia virus, VH1, is essential for viral transcription in vivo and in vitro.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K Liu
B Lemon
P Traktman

Keywords

Abstract

The genetic complexity of vaccinia virus is such that as well as encoding its own transcription and replication machinery, it encodes two protein kinases and a protein phosphatase. The latter enzyme, designated VH1, is a prototype for the dual-specificity class of phosphatases. Here we report that the H1 phosphatase is encapsidated within vaccinia virions and describe the construction of a viral recombinant in which expression of the H1 gene is regulated by the presence or absence of isopropylthiogalactopyranoside (IPTG) in the culture medium. When expression of H1 is repressed, the number of viral particles produced is not compromised but the fraction of these particles which is infectious is significantly reduced. The lack of infectivity of the H1-deficient particles is specifically correlated with their inability to direct the transcription of early genes either in vitro or in vivo. A proximal role for the viral phosphatase in regulating the onset of viral gene expression is implied. Prominent among the encapsidated proteins found to be hyperphosphorylated in H1-deficient virions is the 11-kDa product of the F18 gene; this protein is the major DNA-binding component of the viral nucleoprotein complex. The ability of recombinant H1 phosphatase to reverse this hyperphosphorylation in permeabilized virions strengthens the conclusion that the F18 protein is a bona fide substrate for the H1 phosphatase.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge